Time Value of Money

Critical Equation \#10 for Business Leaders

$(1+R)^{N}$ et al.

Overview

The time value of money is fundamental to all aspects of business decision-making. Consider the following: "Would you rather have \$100 today or \$200 10 years from now?" As simple as this question might seem, there are complex factors that can influence your choice. Our purpose is to explore and simplify the concept of time value of money, providing the insight and tools you need to answer this type of question and, ultimately, create shareholder value.

One aspect of time value of money that is critical to long-term growth is compounding. Einstein has been quoted as saying "The most powerful force in the universe is compound interest." Others have referred to compounding as the " $8^{\text {th }}$ wonder of the world." While both quotes are anecdotal at best, they do emphasize the importance of understanding the time value of money.

In the sections that follow, we will:

- present in detail TRI's Critical Equation \# 10 on time value of money,
- define both future and present value,
- provide a simple formulation for solving time value of money problems,
- examine a variety of applications for decision-makers, and
- bring it back to work throughout.

Finally, we will provide references to our other TRI Critical Equations as appropriate.

TRICorporation

Experiential Leadership and Simulation Programs
Improved decision-making. Enhanced performance. Exceptional results.

Preparing to Solve Time Value of Money Problems

In this section, we will introduce the basic concept of time value of money and the structure for solving a problem. There are two basic classifications of value in this domain: present value and future value. Future value refers to a scenario in which an investment is made today and we need to determine what the value will be at a point in the future. Present value comes into play when you have the right to receive money in the future and would like to understand its value today.

Within each classification there are two sub-classifications. The first is a single sum, which is simply $\$ X$ either today or at a future point in time (e.g., $\$ 100$ to be received in 25 years; $\$ 200$ to be invested today). The second is an annuity. An annuity in its most basic form is a constant dollar amount per a stated time period (e.g., $\$ 300$ invested per year for five years; $\$ 400$ received per year for the next 10 years). Key phrases that let you know you are dealing with an annuity are "per year" or "per stated time period."

Exhibit 1 summarizes the four types of time value of money scenarios that business leaders need to understand.

Exhibit 1

Four Basic Concepts of Time Value of Money

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

For each of the four concepts in Exhibit 1, there are two critical additional inputs needed to solve any time value of money problem. The first is the rate of return, and the second is the time dimension. A precise rate of return and time dimension will give us what is referred to as a factor for a specific type of time value of money problem. To find our solution, we multiply the dollars involved (either single sum or annuity) by that factor. This is shown in Exhibit 2.

Exhibit 2

Solving a Time Value of Money Problem

Behind all of the factors are the TRI Critical Equations that are among the most well known in finance. Exhibit 3 provides the equations to solve for any factor. These are the formulas that are built into the solutions found in time value of money tables and in the coding of financial calculators and/or spreadsheets like Excel. R is the rate of return and N is the time horizon. While we state R as a percentage (e.g., 10% in the Exhibit) in the formula it would be input as a decimal (e.g., .10).

TRICorporation

Exhibit 3

TRI Critical Equations for Time Value of Money

Numerical values for the factors of all four cases in Exhibits 1, 2 and 3 can be found in time value of money tables. Typically, you will find the rate across the top and the time down the left-hand side. By identifying the rate and time, you can go to the intersection and determine the factor. Because rate and time are usually rounded to whole numbers in the tables, they can provide a reasonable approximation of the factor. The equations, on the other hand, are valuable for arriving at precise answers for problems that involve non-whole numbers, like a rate of 8.76% and time horizon of 22.5 years. Exhibit 4 demonstrates the use of one of the tables. This example is specfically for future value of a single sum but the other three work in an identical fashion. The four time value of money tables that correspond to Exhibits 1, 2 and 3 can be found in the appendix.

TRICorporation

Exhibit 4

Time Value of Money Table for Factor Determination

As the analysis has been presented to date, there are four numbers in any problem (rate, time, $\$$ as single sum or annuity, and the solution). Once you know three of the four constants, the fourth can always be calculated. As an example, we might want to know how long it would take $\$ 100$ to triple to $\$ 300$ if our return was 12%, or what rate we would need to earn to double our money over 10 years. Any combination is feasible to ask questions around.

The next four sections are devoted to numerical applications of the equation.

TRICorporation

Experiential Leadership and Simulation Programs
Improved decision-making. Enhanced performance. Exceptional results.

Sample Problems - Future Value of a Single Sum - $(1+R)^{N}$

The following examples are solved via the tables. Try the formulas as practice.
How much will $\$ 100$ invested today at 7% per year be worth by the end of four years?

$$
\begin{aligned}
& \text { Future Value of a Single Sum }=(1+.07)^{4}=1.311 \\
& \qquad \text { Future Value }=\$ 100 \times 1.311=\$ 131.10
\end{aligned}
$$

Note, in future value of single sum problems, there is an implicit assumption that no monies are removed over time. This is the concept of compounding interest, or interest on interest. In our first problem, this means the total $\$ 107$ at the end of year one is reinvested at 7% for the second year. In the second year, we earn not only the 7% on the original $\$ 100$ but 7% on the $\$ 7$ (or 49 cents) of interest earned in the first year. This is why the 7% two-year factor is 1.145 . The table values are truncated at three decimals. Graphically this would be a non-linear relationship to indicate the constant growth.

How much will $\$ 1,000$ invested today at 10% per year be worth after 20 years?

$$
\text { Future Value of a Single Sum }=(1+.10)^{20}=6.727
$$

$$
\text { Future Value }=\$ 1,000 \times 6.727=\$ 6,727
$$

Note that in the example the compounded interest over 20 years dwarfs the initial investment of $\$ 1,000$. This is an example of the power of time with continual reinvestment.

How much would $\$ 100$ be worth if it is invested today for five years at 10%, and the full amount at end of the fifth year reinvested for the next 10 years at 5% ? That is, how much would you have at the end of 15 years? Test your knowledge and prove the answer is approximately $\$ 262$. After you are satisfied with the $\$ 262$, ask yourself how much would $\$ 100$ invested today for 10 years at 5% and the full proceeds at end of year 10 reinvested for the next five years at 10% be worth at the end of 15 years? That is, as in the prior problem, how much would you have at the end of 15 years?

Before you jump to the tables, a calculator or the formulas, think logically what the answer has to be. The answer is still $\$ 262$ because these are just multiplicative relationships. Does this mean you would be indifferent to an offer of both options? If your only concern was terminal value (how much you have at the end of 15 years), you would be indifferent. What if you had the option of getting out

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.
of either scenario before year 15? Would you still be indifferent? The answer is no. In this problem, the first scenario will always have a larger value up to that last second before the end of year 15. Prove it.

One of the most common heuristics involving the time value of money, and the future value of a single sum, is the "Rule of 72." The essence of this rule is that by dividing 72 by the rate, you will get a reasonable approximation of how long it takes to double your money. For example, with a 10% annual rate, divide 72 by 10, and the answer is 7.2 years. A more precise answer, arrived at via our formulas, would be 7.273 years.

Sample Problems - Future Value of an Annuity - $\left\{\left[(1+R)^{N}-1\right] / R\right\}$

How much would you have if you invested \$1,000 per year for four years (with the first annuity payment at the end of year one or in arrears) if the rate was 10% ?

$$
\text { Future Value of an Annuity }=\left\{\left[(1+.10)^{4}-1\right] / .10\right\}=4.641
$$

$$
\text { Future Value = \$1,000 X } 4.641=\$ 4,641
$$

This problem could also be solved as four single sums of $\$ 1,000$ each for their respective time. The fourth payment of $\$ 1,000$, under the assumption of arrearage, would not earn any interest because the process immediately stops at the end of the fourth year, before any interest can be earned on it.

How much would you have if you invested $\$ 2,000$ per year for 30 years (with the first annuity payment at the end of year one or in arrears) if the rate was 12% ?

$$
\begin{aligned}
& \text { Future Value of an Annuity }=\left\{\left[(1+.12)^{30}-1\right] / .12\right\}=241.333 \\
& \text { Future Value }=\$ 2,000 \times 241.333=\$ 482,665
\end{aligned}
$$

In this example, you can vividly see the impact of time and rate on final value. Over the 30 years, $\$ 60,000$ was invested. The difference of $\$ 422,665$ is all of the accumulated return. This is a very common retirement scenario. We chose 12% because many academics would suggest this is a proxy for long-term stock market returns. The 30 years corresponds to a working career and the buildup phase of retirement monies.

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

Sample Problems - Present Value of a Single Sum - (1+R) $)^{-N}$

What is the present value of $\$ 1,000$ to be received in three years at 10% ?

$$
\begin{gathered}
\text { Present Value of a Single Sum }=(1+.10)^{-3}=.751 \\
\text { Present Value }=\$ 1,000 \times .751=\$ 751
\end{gathered}
$$

In this example, you have the right to receive $\$ 1,000$ three years from today. The question being answered is, what would you pay for this right? In a perfect world, if 10% represented your true required return, you would be indifferent to the choice of an offer of $\$ 751$ today or $\$ 1,000$ in three years. Consider turning this into a future problem of a single sum. If you invested $\$ 751$ today at 10% you would have $\$ 1,000$ in three years. Of course, if 10% was not your opportunity cost of money, then your decision may change.

The most important takeaway of this problem is to understand that present values are market values. The question "What is the present value?" is equivalent to asking "What is the market value?" or "How much would you pay today?" This is the essence of why present value concepts are used in all types of valuation when there is a time dimension to when monies are received.

Our next example is designed to demonstrate how to deal with the present value of a series of divergent monies over time. This is a very common real-world business application. Your business is doing an appropriation request and the finance team has generated the following cash flow stream:

End of Year	Cash Flow
1	$\$ 100$
2	$\$ 200$
3	$\$ 0$
4	$\$ 100$

Your required rate of return (an example would be the cost of capital in TRI Equation 4) is 8%. What is the present value of the cash flow? The key is to recognize that each cash flow can be treated as an individual single sum. Calculate the factors using the present value of a single sum formula, $(1+R)^{-N}$, and create a chart as follows:

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

End of Year	Cash Flow X Factor	$=$ Present Value
1	$\$ 100 \times .926$	$=$$\$ 92.60$ 2
3	$\$ 200 \times .857$	$=\$ 171.40$
4	$\$ 100 \times .794$	$=$
		$\$ 0$
		$\$ 73.50$
$\$ 337.50$		
$=====$		

The present value of the sum is the sum of the individual present values, and it equals $\$ 337.50$. (This approach is also readily and easily applied in a spreadsheet format.) Therefore, $\$ 337.50$ is the maximum amount the company could invest and still earn an 8% return. If we pay less than $\$ 337.50$ and generate the expected cash flows, our return exceeds the 8%. If we pay more and generate the cash flows as given our return will be less than the 8%. This is the logic behind all NPV and IRR problems.

Sample Problems - Present Value of an Annuity - $\left\{1-\left[1 /(1+R)^{N}\right]\right\} / R$

What is the present value of receiving $\$ 1,000$ per year (payment in arrears) for five years at 12% ?

$$
\begin{gathered}
\text { Present Value of an Annuity }=\left\{1-\left[1 /(1+.12)^{5}\right]\right\} / .12=3.605 \\
\text { Present Value }=\$ 1,000 \times 3.605=\$ 3,605
\end{gathered}
$$

This problem could also be solved as five individual present values of single sums of $\$ 1,000$ each for their respective time.

If the rate in our problem was 15%, holding everything else constant, what is the present value?
Present Value of an Annuity $=\left\{1-\left[1 /(1+.15)^{5}\right]\right\} / .15=3.352$

$$
\text { Present Value = \$1,000 X } 3.352=\$ 3,352
$$

Note, when the rate goes up the present value goes down. This is a fundamental result with positive rates:

Rates Up ... Present Value Down
Rates Down... Present Value Up

There is a very interesting problem in present value space when the annuity is to be received forever. A perpetual annuity is often referred to as perpetuity. The implication in our formulation is that N goes to ∞.

$$
\text { If } N \text { goes to } \infty \text { then }\left\{1-\left[1 /(1+R)^{N}\right]\right\} / R \Rightarrow 1 / R \text {. }
$$

The implication for valuing perpetuity is that we divide the perpetual cash flow by the rate. As an example, what is the present value of receiving $\$ 100$ per year forever, if you require a 10% return?
Present Value = \$100/.10=\$1,000

If you converted this problem into a future value problem, imagine making an investment of $\$ 1,000$ earning exactly 10% each year forever. There is an assumption of yearly compounding. At the end of year one you could withdraw the $\$ 100$ of interest earned and have the $\$ 1,000$ investment for year two. At the end of year two you could withdraw another $\$ 100$, and so on and so forth. You could forever make withdrawals of the $\$ 100$ per year (at the end of the year) and never dip into your original investment. Perpetuity valuation can occur with consols (perpetual bonds issued in Europe to fight wars in antiquity) and preferred stock as examples. In appropriation requests, it is also common after a period of growth to assume a terminal value based upon a perpetuity formulation. This assumption is made to reflect simplicity and maybe a conservative case, and also because the forecasts beyond the growth period (typically five to 10 years in practice) can be fraught with significant error.

Annual to Continuous Compounding

All of the equations and examples thus far have assumed an annual rate paid at the end of the year on the beginning balance. There are other rates that assume other-than-annual compounding. This is often the case in financial service markets and deposits. For example, you may have heard the statement " 7% annual rate with monthly compounding." The number of times compounding will occur within a year is given by M . Any of the formulas in Exhibit 3 can be adjusted to allow for M period compounding by dividing the R by M and multiplying the N by M .

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

The formula for the future value of a single sum is given by:

$$
(1+\mathrm{R})^{\mathrm{N}} .
$$

The formula for the future value of a single sum with M period compounding is therefore given by:

$$
(1+\mathrm{R} / \mathrm{M})^{\mathrm{NM}}
$$

With an annual rate of 10% and five years, the factor is 1.611 (from the formula or table in the appendix). With monthly compounding (i.e., $M=12$) the factor is 1.645 . A $\$ 100,000$ investment under annual compounding would grow to $\$ 161,100$. With monthly compounding the terminal value would be $\$ 164,500$, or $\$ 3,400$ more, as a result of the frequency of compounding.

The limit condition of compounding would occur when M goes to infinity. In financial theory this is defined as continuous compounding. The formula for the future value of a single sum with continuous compounding is given by:

$$
e^{R N}
$$

where e is Napier's number, or the base of the natural logarithm. An approximate value of e is 2.713. As esoteric as the equation may seem, continuous compounding has many applications in finance. The last time we saw the concept was in TRI Equation 6 on Options. It is embedded within the Black-Scholes formula.

One needs to be very careful when comparing rates with divergent compounding periods; for example, 6% compounded semi-annually vs 5.8% compounded daily. We can only make the comparison after calculating what is often called the "effective annual rate" or "effective (or equivalent) annual rate." The mathematics is detailed below using the M period compounding model above. Six percent compounded semi-annually equates to an effective annual rate of 6.09\%, while 5.8% compounded daily (using 365 days) equates to an effective annual rate of 5.97%. Only the effective annual rates can be truly compared.

$$
\begin{gathered}
\text { Effective Annual Rate }=[1+(R / M)]^{\mathrm{M}}-1 \\
\mathrm{EAR}=[1+(.06 / 2)]^{2}-1=.0609=6.09 \% \\
\text { EAR }=[1+(.058 / 365)]^{365}-1=.0597=5.97 \%
\end{gathered}
$$

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

Excel Applications

In this section, we review the basics of solving a present value problem in Excel. The example in Exhibit 5 is specifically for present value. It outlines the steps to solve the present value of the problem above, where we have the right to receive $\$ 1,000$ per year for five years at 15%.
Remember that we calculated that present value at $\$ 3,352$. Note the Excel answer enclosed in the red ellipse is $-\$ 3,352$. The interpretation of the minus sign is that this is the amount we would pay today to have the right to receive $\$ 1,000$ per year for five years if we required a 15% return.

Exhibit 5

Excel Applications of Present Value

We leave it to the reader to practice with the Excel time value of money functions. Excel is extremely robust with regard to all financial functions.

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

Valuing a Bond

The valuation of a corporate bond is an excellent example of the mathematics of present value applied to a financial instrument. An investor in a bond typically invests $\$ 1,000$ per bond at original issuance of the bond by the corporation. The investor receives an interest amount per year (in practice semi-annual), which is referred to as the coupon rate. The bond will have a maturity and, if all goes well, will be repaid in full at the original investment at that time.

Exhibit 6 is the market value of a bond for a AAA-rated company. The bond was originally issued in 1975 and matures in 2004; that is, it has a 30-year maturity. When the bond was originally issued, 30 -year AAA interest rates were 8.5%. In the ideal world, the investor would give the company $\$ 1,000$ and expect to receive $\$ 85$ per year and $\$ 1,000$ at the end of the 30 years. Corporate bonds typically trade, and rarely will investors hold them until maturity. Any trades will be at a fair market value. Even if the creditworthiness of the business does not change (i.e., remains AAA rated), if interest rates change after the original issuance, the market value may deviate from the $\$ 1,000$ face value per bond.

The primary reason AAA rates can vary over time is that U.S. government debt (with a remaining identical maturity) can vary due to changes in macro-economic conditions and inflationary expectations. That is, the government yield curve will have shifted. The market value of the bond at any time, prior to maturity, is the present value of the remaining coupon payments (in this case the $\$ 85$ per year) and the present value of $\$ 1,000$ to be received at maturity. Technically, if the bond only has 20 years left, the market value must be reflective of the 20 years, not the original 30 .

The upper left-hand corner of Exhibit 6 shows the market value of the aforementioned bond, the upper right-hand corner shows AAA bond yields, and the lower middle shows an overlay of both graphics. The key is the inverse relationship between rates and value, which we articulated earlier. The bond markets of the world are an area where the concept manifests itself in trading all the time.

TRICorporation

Exhibit 6

The Inverse Relationship between Rates and Value in the Bond Market

The market value of the bond dropped to under $\$ 600$ by the early 1980 s even though the credit quality of the issuer of the bond remained AAA. This was a period of significant (and for the U.S. unprecedented) inflation. The inflation expectations exceeded 12% at the time, and interest rates increased. You will note the example ends in the early 1990s. Interest rates on AAA debt had dropped to below 8.5% and it was an opportunity for the company to call the debt (essentially refinance it at lower rates). As we discussed in TRI Equation \#6 on Options, the opportunity to call requires the payment of a premium. In effect, this is what homeowners do all the time, typically without any pre-payment penalty, but at a much larger corporate level.

Time value of money is basic to valuing bonds. At the time of this writing, many (but not all) investment experts believe that an increase in interest rates is inevitable coming off of global monetary easing and that bond markets could drop significantly in value. We will check back on this one in a few years. Negative interests are also a current reality in capital markets and, while beyond our scope of detail, do create many unique mathematical relationships in the time value of money.

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

Valuing a Capital Investment (or Application to an Appropriation Request)

In TRI Equation \#9 on Cash Flow, we presented a sample appropriation request of Hypo-Product. This was a standard free cash flow application. Exhibit 20 in TRI Equation \#9 showed a summary of many relevant metrics, including net present value, and is reproduced as Exhibit 7 below, with Excel modifications to demonstrate the present value syntax. The cost of capital was 14%. Note the NPV formula has two pieces (the present value of cash flows and the initial investment assumed paid today).

Exhibit 7

NPV using Excel

Valuing a Stock

Equity markets are intrinsically forward looking, and in the spirit of efficiency, prices should reflect all relevant information. The forward-looking nature of equity markets makes them potentially ideal to use time value of money techniques, specifically present value, to determine the market value.

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

Financial and investment analysts will routinely use present value techniques from the very simple to the incredibly complex. One of the basic models for valuing equity is referred to as a constant growth model. In this model, the most common application is that an estimate of the price per share is the present value of future dividends. (Naturally, there are variations for non-dividendpaying companies, as well as discounted cash flow models). In the constant growth model, the dividend is assumed to grow at a constant rate per year forever. (There are also multistage dividend growth models that allow for growth rates to regress to regular growth in the economy.) The rate used is the cost of equity capital as discussed in TRI Equation \#4, with the CAPM being the most widely used in practice. The dividend growth model in simplest form is given by:

$$
P=D /\left(K_{e}-g\right)
$$

Where P is the price per share, D is expected dividend per share at the end of year one, K_{e} is the cost of equity, and g is the growth of dividends per year forever. If D was $\$ 1.00, \mathrm{~K}_{\mathrm{e}}=10 \%$ and $\mathrm{g}=$ 2%, the estimate of the stock price would be:

$$
P=\$ 1.00 /(.10-.02)=\$ 1.00 / .08=\$ 12.50
$$

In the price per share formulation above, note that when $\mathrm{g}=0 \%$ (that is, no growth), the formula simplifies to $\mathrm{D} / \mathrm{K}_{\mathrm{e}}$. This is our aforementioned perpetuity formulation derived from the present value of an annuity. In this case, the annuity is the D per year forever.

Valuing the Decision to Take a Discount

One of the timeless problems in finance is determining the optimal timing to take a discount or not with trade credit. For example, if you were offered $2 / 10 \mathrm{~N} / 30$ terms, (taking a 2% discount to pay within 10 days, or paying the total in 30) and your cost of borrowing was 10% on an annual basis, does it pay to take the discount even if you have to borrow? The basic answer is nearly always yes, because the opportunity cost of not taking the discount is often calculated at approximately 36%. By taking advantage of a discount, a customer is essentially changing the total amount due into two components: interest paid on the invoice and the revised balance due to the vendor. For example, a $\$ 5,000$ net due amount would now be considered $\$ 100$ of interest, and $\$ 4,900$ of amount due for the goods or services. This basic solution is given by 2/98 times 360/20.

$$
(2 / 98) \times(360 / 20)=36.7 \%
$$

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

The reality is that when the time value of money is considered, the cost of not taking the discount is given by using the logic of $(1+R)^{N}$.

$$
[1+(2 / 98)]^{(360 / 20)}-1=43.8 \% \text { as a } \% .
$$

The true cost of not taking the discount is significantly higher than the routine 36% tossed around in examples. A key lesson is to make sure you are taking the discounts when the math is in your favor.

Summary

While Einstein may have overstated when he said "the most powerful force in the universe is compound interest," the time value of money is fundamental to all aspects of business decisionmaking. We have tried to provide insight into the basics of this concept through TRl's Critical Equation \#10.

TRICorporation

Appendix－Time Value of Money Tables

Presented below are the four time value of money tables as discussed in Exhibits 1，2， 3 and 4.

Future Value of Single Sum ．．．$(1+R)^{N}$

	in	f	in	47	15	82				15	17		6F\％	34%	15	154		in		
1	10is	Ifat	1．N0］	（1）0	1，409	1 10e	120	Ime	Iimes	1.106	1.18	1280	189	1160	1.15	Hild	1.15	Lin	1.16	1300
\pm	E，008	L130	1令i	1 Int	1780	1.124	1214	Lim	118	1210	127	1224	17	1300	1.12	134	1.169	Live	1.45	1．4＊）
\dagger	去新	131	$1 \mathrm{l} \mathrm{BH}_{1}$	1321	1.138	tit	titil	1．700	1．2vt	1．311	1 l	1．46	titit	13 E	1515	1．94	$1 / 10$	（14）	1／48）	1325
4	184t	1007	1.15	715\％	1314	136	171	1．10	1401	1465	T11\％	1574	1985	18 m	1，76	1：in	114	1514	704	1.807
1	Mort	1104	1．199	1317	1376	1.114	1，40	14\％	1545	1.611	10 el	178t	Ling	1，856	2開	Sille	218	？ S_{5}	2ial	2407
6	Hes？	1.15	1.14	1284	1.140	1． 110	186	148	147）	1572	18\％	1．544	2ay	218	2.513	2．43	2.01	2．ab	\％ 50	2，5es
7	Taty	116	1.180	1318	1．40	1．90	165	t＊14	18tis	1，盛	2875	2211	2915	2 tat	tade	tiss	1301	1295	155	1583
t	Levis	i¢1\％	12 c	130	1．47	L． 1.4	1178	184	18）	1.144	2W	248	2.614	き边	51848	127	1511	Al	48 EL	4.100
	Ina	1．91）	13 H	1427	13511	INas	1314	1 We	217	1315	2514	1 71	1364	$13+$	1518	1 131	4.00	4815	473	Stiel
10	L．195	1218	1．158	1，em	167	ETr	1ent	275	2 m	$2 \mathrm{2v5}$	239	1.15	155	1\％	4046	4.411	4 nec	tis：	fimt	6ist
11	1．135	130	1185	1，51\％	1．73	tiven	$2 . t 5$	2 m	Yeft	2015	\＃12	1.45	\％th	5 zts	4.40	$510{ }^{\circ}$		4．175	5 Fl	P．430
建	112t	1．Nod	1．43\％	1005	1354	1．015	252	E5H	2815	M18	198	Ims	4.55	483	cke	1904	6 CWO	± 5	Ledst	8，94
E5	L．18	13，${ }^{1}$	$1+6$	1.64	183	218	2415	：73	Tam	M85	1303	4．151	4．90\％	1．9\％	6.131	6．86	tame	8．P9	3.80	1868
1	1．19	Hirs	1311	1）	1．Nat	t．5in	2.15	2 nd	148	3×7	4ine	4int	1515	4.51		then	timt	11H0	11 ction	1280
11	1151	136	1，15	timitin	1.078	E澵	2	$4{ }^{1+2}$	fise	4.17	t＊＊	145	824	＊ts	＊1t	529	Hive	11^{174}	t106	18．4ES
5	Lifi	日川	$1.40{ }^{\text {c }}$	157	1．181	1．14	20\％	1.46	INT	4．09\％	Nill	4年	7／as	silf	5.558	1474	tila	145	1512	18．48）
1	1184	165	1251	149	2．202	2tas	1514	1700	810	Felt	Nam	dics	\bigcirc	＋ ¢ $^{\text {\％}}$	［474）	15\％	Ti4．4s	315915	1324	22.15
晈	1．16	1ass	1＊\％		1．ant	सक्य	154t	tiom	4＊1）	15am	5 Sta	T ${ }_{\text {而 }}$	3254	thets	12 st5	14 as）	tus\％	that	12005	2 cks
F	L5	1497	1，754	219	1.527	tigs	1A1t	4．15	514	6.116	7581	610	ieret	1＋0ts	16254	15\％	10403	23 214	21， 2 ？	11.548
tos	1280	Bass	1／106	2101	Isas	M 2 aF	3 Ey	40el	5.64	675	A．sel	6，645	11.97	（t）2al	14.387	15.451	Dide	159\％	12．40s	12．338
71	1111	1116	1，	112	$\underline{178}$	1－3	4141	1804	4.18	T／300	Tati	筬新	ilsty	li．ala	Exge：	71.12	21.315	12．12－	TEV	63．006
\＃	Ets	THe	17 m	215	2vet	tiol	438	14It	4＊＊	41m	6004	14．00	1475	ttert	21－481	Stist	\＃187	1t10	4， H_{5}	35.36
21	154	Itit	$1 \mathrm{~N}^{1} 4$	2.41	sots	10	4741	Asti	± 314	4044	Inatis	11389	1409t	7．45	$2 \mathrm{em\mid}$	30158	14．006	4xas	34.0 an	$60.14 t$
it	1270	1and	2.807	$2 \leq 1$	3 ± 15	4093	5 cm	6.441	2 2\％11	9xie	12：	1439	1874	？ 2 It	3 sat	H34	A1．37	A2re		Ye．avt
8	the	13al	3 104	Lille	1，136	4）	54.7	8ser	483	tasis	1）56	17000	\＃	人6＋5：	18919	4 4×4	fees	8 com	T7，	91．36
${ }_{3}$	Evt	\＃517	215	2才t3	3.44	414	$5 \times$	T30	4 局	S19\％	INE	t＋345	7\％	40．45\％	97， 47	4Pdit	68270	tew	4）	114．47
5	1．56	1701	± 221	2 Est	A73	4×3	C214	7，／ni	31865	I2itg	1576	2112	2\％	14700	$4 \mathrm{SH1}$	11.00	06341	$y^{2}+56$	160．5y	123t1
5	䡟	814	Iter		3985	1.12	tise	\％al	itisy	H48t	Itie	53864	1885	ferse	feas	akiner	Eilt	H0¢ le？	ftent	10484
5	ETM	817	pre	IIIV	4.131	＋6i\％	3 H 14	－1／t	38 mb	\＄1．45	3 lat	NTe	Hsis	4 say	17．575	3480\％	Wenct	17804	1710	497834
M	1348	8，631	Pift	134	4.173	2761	7418	10．043	11.36	37．44	22．73	NoMal	W．14	90， 1 \％	46213	\％rys	141．ist		thesty	217，374
81	Liet	1585	t．jots	131	4.178	ther	\＄14	Itses	14.80	tr104	twat	11354	44.301	M0．int	\％ 618	mider	122．nes	1exith	2resia	204.812
时	E．15	1284	2179	1.08	476	क－11	871	11575	14．86	2 Cats	2x．30	17.808	60．0？	6×311	80．65	115：53	42，	14985	N1．519	34， $8: 2$
II	L．7en	5142	2840	165	1809	6ist	cks	12．at	1）．19！	29．32	IE15	ctse	4409	4 tat	thenot	Ifugei	ITt，as	21） 101	Iilsev	4 tajam
H		5104	278	173	1393	寺里	577	Dave	18315	20est	析码	at3m	A1 4 Tr	Mant	IHLMet	151 at	ther	\％	杜等	4V2．334
H	tett	2100	tat	1ves	8.134	P去	7tict	1165	21414	2EDA5	1017	itam	T2My	\＄010	13834	intil	24515	k	54ertion	Wekes
幏	1611	Itit	1／ner	4 tat	1732	S14＂	1244	t104	12251	NESH	420	7014	E．AT	\＄1133	183158	200id	26twoy	H7 $\mathrm{Hat}^{\text {a }}$	834.44	\％oewet
If	165	231	2／vs	A． 380	Sbat	sats	f2yst	1720	24214	34.305	Cith	6bale	最迷	tiF 湤	f＊iss\％	24！A5t	31314	450901	Suats	＊iesct
\％	1 年	2112		4．799	E794	Q 2156	189\％\％	issty	S4at	77.404	12／45	K＋7e	mioct	191．）6	2e2．548	新楥	sypory	Stisiv	$77^{\text {7 } 513}$	tetecrs
隹	$1.8^{4} 7$	2105	13 s	4656	4706	4 74	Ixwo	SuIs	2318	4 L .45	3 log	沵琞	litsos	361ay	132 v25	13624	4×5	51×314	51） 314	12tans
6	1am	2.265	103	t．mbl	1／345	3836	It，4e？	54．75	H，Nef	4529	61．704	Wat	\＃5．Net	182．ne4	10，4＊4	Fx\％7	975 cet	Proshe	1051 Aest	I6097］

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

TRICorporation

Experiential Leadership and Simulation Programs

Improved decision-making. Enhanced performance. Exceptional results.

Present Value of Annuity．．．\｛1－［1／（1＋R）N］\}/R

				43				n．			11					－			5	
1	ave	ene	dift	㬉	306t	Elsel		Bese	（107）	0.000	384	limb	退！	684t	Ex9	戊䊾，	6as	Bat	Exat	4．311
1	1070	1．001	$1 * 1$	183	1319	1817	1ver	13．3）	2\％ip	1．156	1，711	1400	ITMA	11.20		Liow	2381	1189	1147	8.128
3	2541	2 L		278	132	159）	2606	2，nt	281	2.487	146	24.8	2id）	23：	2.283	3245	2218	2174	2140	2.96
4	1 cot	1，ता	1.17	1 615	3，45	1451	1.10	1115	1545	\％ 374	1.75	tart	tivt	2wn	2855	土乌t	＊＊${ }^{\text {¢ }}$	2int		2590
4	4651	417	＋ 500	468	4.18	4212	4，100	$1{ }^{103}$	$1 \times \mathrm{m}$	30\％	1．045	8ad	359	1，41	1.352	5184	3 m	1.14	7	2001
4	3．75	3 3 at	3．40t		\％${ }^{1056}$	4int	4＊＊	4.653	4 tem	4359	4.31	4111	1．w＊	3 sma	3784	3．ans	13%	346	1，400	\＄．336
\％	675	6471	4.370	6 cos	105	Ster	1.10	5360	1 la	Aser	4．17	434	（40）	4．2．e	4.46	4017	3x92	1412	1．76	3．6es
θ	等	\＄37	\％ 208	边	6.23	41719	8 MPI	132	105	5385	5.146	dwa	4．70	460	4．87	4.14	i3？	4ip	1 जिए4	1831
\geqslant	230．	s．jes	17 m	T－31	7，1道	cult	678	636\％	tivi	479	Hil：	458	138	＋505	4512	tayt	4．411	4．7in	4161	4315
18	$6{ }^{411}$	K．961	E500	8ill	7，722	T，100	7，454	6736．	4.418	4．as	10．e\％	1518	948	3716	160\％	［815	4.46	484	8300	4．59
II	Hetar	4＊＊	40	8 Ely	Etas	tint	さivo	tals	dins	6．36	630	（2）9	S64t	Mat	\＄134	5 fors	4i）${ }^{\text {a }}$	4．3）6		4327
I2	12.25	10．21	$29 / 4$	4 al	9351	2．144	tsut	Pfis	＋．101	6，栜	S4！	5iv4	fivis	1／400	5.481	1事	4＊5	4×15	40il	4.437
I3	1213	11.44	teds	905	6，344	S85	S18	7804	T，e？	7，593	6760	6484	6，122	1／4）	0838	14\％	1115	496	471	4.931
14	$11 \pi=4$	12．106	［1\％	thital	9，	52， 21	NTTit	W849	TTis	The	枹；	4asi	Stor	$60{ }^{5}$	3.54	tas	57%	Tow	4N3\％	4.511
B1	12at	Itse	11．03	11， 118	10．100	492t	8.18	8．0．0	4064	7 mbs	2 tal	4814	603	414	5 cog	A85	3324	lomt	AES	405
14	1478	1598		1182	foxes	法洨	9．47	Sall	Q 35	2.824	23＞	5974	6N04	631	1084	1．064	Sat	S62	4 Vs	4730
17	1510	15：\％	IL．tot	12．16t	11．74	164T	tet	＊ 1 d	cid	A192	154\％	400	E\％ 8	675）	A04？	1.745	2．45t	t＋12	Am0	4．75
18	H7ty	104\％	1143	t206	11．010	ines	tioth	＊ $1+$	＋ 45	t．20t	tht	$+20$	cast	6.64	4．128	teit	1594	173	tain	4.312
18	1932	15a\％	10134	［15）	120x	11.48	浐澵	＋mp	290	134	1294	2．94	6）318	E49	Eris	tict	4350	4it	\pm＋m9	A．341
20	ram	16．55t	1tirt	15590	1200t	11．ato	10.975	exil	4．3\％	1518	t，\％6t	土ats	tates	6－4）	4．197	（020	1295	144	K101	acy
31	IRast	IT，${ }^{\text {a }}$		Haw		11.140		Halt	5．87	4498	act	TES	7100	6nt	6.712	（ज7）	3.861	1104	5127	4 mb
2t	1516ep	Itast	（1．9\％	Went	isiss	Itied	Ttisit	A5301	枹	157	8.18	2061	住第	6541	6399	6昭	five	Hate	4．14b	4005
59	29alif	12－5\％	14．44	＋6．7	13．09	IZ．181	10．342	12351	＊${ }^{\text {a }}$	8．35	8．256	3ヶッ	5219	6\％0	6700	\＄8．4	5981	184	tis\％	4V25
$3+$	\＄1．24	｜x，y\％	ikws	1514：	1159	12．3\％	11，／w	inty	－	1565	Q14if	tray	T－18	6x）	4．44	Aaty	134	M43		4.37
\＄	\＃\＃2\％	twis）	17．413	Hfat	14．0．4	$12 \% 0$	11854		\％ats	\＄297	2ad：	tres	7，615		6．484	samt	ctic	tant	tivi	4.45
3		Ta121	Fsty	H5M5	14.15	13.00	E15＊s		－${ }^{\text {as }}$	43	S＊＊	20x	T37\％	6016．	4．31	A1）	9，7w	（40）	135	ave
\＃	51，iad	Jover	19．78	（6）170	14.51	12.11	［1m？	1685	sats	8．a	s．140	2×6	Tent	6051	4．545	＊．14	\＄176	＊为	＇t151	4504
35	Stint	21.81	Ixtay	lawal	14．06	13．40		Itas	81116	\＄30t	Lat	194	＋ 64	6851	6.534	6.112	Tsin	loty	1221	4．9\％
3		21.80	1t．14		15141	11，	比场	1125	7tim	6．3\％	2esal	Bats		E＊）	6531	616A	53）0	\＃tit	125	4.905
14	25806	22.146	1280	17.292	15．97	11．765	12．499	11．38	18254	2427	E．apt	4865	7．106	7 7601	5.565	6.17	5829	5317	5.26	4.90
11	7610！	2109\％		1756\％	15．001	ItMe\％		İ，100	22， 13	8．45\％	471	sang	7548	TET	6.57	A㬉	TMST	4 ter	175	4085
寿	712\％	21.40	Mow	17，ict	12905	14／34	［1－567	1248	B145	2530	A190	6112	7.15	7，091	6.458	61＊	\＄ 54.	408	134）	405
13	Ftrm	S1．ve	哏70	txide	16004	14.30	E．t5	供析	maly	8309	＊xel	8117	5.545	town	6.600		5 Sm	1512	1．35	4 W 5
4	者：	Ham	21.85	12＋41	16.199	H3\％	Etsy	ister		\＄809	skes	sif	787	Tase	4．609	612	5×54	trie	154	4000
H	可束	Scom	21．act	［ixide）	16．54	14．70	1tsatr	Jtast	nime	6．44	nast	近	Ts？	Jato	6．64？	6．215	8.15	1030	5 81	4.65
18	Ment	＋1，	Sisot		16．54	14：3！	bay	（17）？	＊）at2	467	Eict	sevt	7500	trey	4．93）	d． 292	4est	114	129	40s
17	Neme	dese	［1．14	18．14	16711	UTIT	H1．3？	（t\％）	3143）		swe	4．304	7 Nay	thet	6.593	4274	4，	（14）	Ans	4．04
18	Hela	\＄6al	慗枟	交退	1604	H1／4	［1］ 18	15.5	＋1aw	क， 211	相年	8271	＋516	7504	E．83	4．275	test	H14	154	4W5
15	住盛	Suki	1tsor	（tases	17．17？	14.0 m	［130il	ILIET	natis	8957	awe	8211	Pat）	713	6．838	dat	5 Sol	Het	1207	4．0．5
45	18.85	2735\％	2 L 15	1＊＊9	17，160	15．0W	18384	11．03	14，357	\＄07\％	A．2．t	1.14	764	7．15	6．422	6.219	S871	1348	525	4．0．0？

TRI Corporation provides this note for educational purposes only．The information contained herein does not constitute legal，tax，accounting，management，financial or investment advice and should not be used as a substitute for experiential training or consultation with professionals in those disciplines．The information is provided＂as is，＂and without warranty of any kind，express or implied， including but not limited to warranties of performance，merchantability，and fitness for a particular purpose．

